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Reduction of Musical Noise by Weiner Post 
Processing Method 

S.Sulochana, S.Senthil Siva Manikandan.

Abstract—A stand-alone noise suppression algorithm is presented for reducing the spectral effects of acoustically added noise in speech. Traditionally 
de-noising techniques are powerful in terms of noise reduction, have the drawback of generating an annoying musical noise. This paper proposes the 
problem of enhancing speech in highly noisy environments using non-diagonal audio de-noising algorithm through adaptive time frequency block 
thresholding. A block thresholding procedure empirically chooses the block size and threshold level at each resolution level by minimizing the Stein’s 
unbiased risk estimate. Numerical experiments show that this adaptive estimator is robust to signal type variations and improves the SNR. 
 
Index Terms— Spectral de-noising, Musical Noise,  Block thresholding, Stein’s risk estimate, spectral subtraction. 

———————————————————— 

1.INTRODUCTION 
Degradation of the quality of speech caused by the acoustic 
noise is common in most speech processing applications. In 
mobile telephony, reducing noise in corrupted speech is a 
challenging task especially in high noise level. In all speech 
communication settings the quality and intelligibility of 
speech is of utmost importance for ease and accuracy of 
information exchange. The speech processing systems used to 
communicate or store speech are usually designed for a noise 
free environment but in a real-world environment, the 
presence of background interference in the form of additive 
background and channel noise drastically degrades the 
performance of these systems, causing inaccurate information 
exchange and listener fatigue [2], [5]. Restoring the desired 
speech signal from the mixture of speech and background 
noise is amongst the oldest, still elusive goals in speech 
processing . 
Speech enhancement algorithms attempt to improve the 
performance of communication systems when their input or 
output signals are corrupted by noise [5]. This is important in 
a variety of contexts, such as in environments with interfering 
background noise and in speech recognition systems. Over 
the year, researchers and engineers have developed a number 
of methods to address this problem. Yet, due to complexities 
of the speech signal, this area of research still poses a 
considerable challenge. It is usually difficult to reduce noise 
without distorting speech and thus, the performance of 
speech enhancement systems is limited by the tradeoff 
between speech distortion and noise reduction. In general, the 
situation where the noise and speech are in the same channel 
(single channel systems) is the most common scenario and is 
one of the most difficult situations to deal with. The 
complexity and ease of implementation of any proposed 
scheme is another important criterion especially since the 
majority of the speech enhancement and noise reduction 
algorithms find applications in real-time portable systems [6]. 
 
 A large number of speech enhancement techniques have 
been proposed in the past. They are predominantly based on 
spectral subtraction [1] and short-time spectral amplitude 
estimator [3], [4]. But their main drawback is the appearance 
of an annoying residual noise, often referred to as musical 

noise. The noise suppression rules, together with a decision 
directed recursive estimator of the a priori signal-to-noise 
ratio(SNR) that efficiently reduces the musical noise [2], [11]. 
Their suppression rules have been reinvestigated through 
years and a non-casual a priori SNR estimator has been 
proposed [3], [14].   
The approaches for noise reduction using the wavelet 
transform have been proposed in [10], [12]. It employs the 
thresholding in the wavelet domain and has shown to have 
very broad asymptotic near-optimal properties for a wide 
class of signals corrupted by additive white Gaussian noise. A 
semi-soft thresholding is used to remove noise components 
from the wavelet coefficients of noisy speech [6]. There 
should be however some considerations in applying the 
threshold method directly to speech signal. Since the speech 
signal in the unvoiced region may contain relatively lots of 
high frequency components that can be eliminated during the 
thresholding process. Eliminating them in the wavelet 
domain can cause severe degradation of intelligibility in the 
reconstructed signal.  
Many signal de-noising techniques are based on attenuation 
in time-frequency signal representation. Diagonal time-
frequency audio de-noising algorithms attenuate the noise by 
processing each window Fourier or wavelet coefficient 
independently. These algorithms create isolated time-
frequency structures that are perceived as a “musical noise” 
This musical noise is strongly attenuated with nondiagonal 
time-frequency estimators that regularize the estimation by 
recursively aggregating time-frequency coefficients. This 
paper investigates a non-diagonal audio de-noising algorithm 
with the help of adaptive time-frequency block thresholding 
[7]. The block sizes and the threshold level are in redundant 
time-frequency signal representations and the block 
thresholding eliminates the residual noise artifacts through a 
temporal regularization and it provides good approximation 
of the attenuation with oracle. 
The rest of the manuscript is organized as follows. In section 
II, the proposed speech enhancement scheme is briefly 
outlined and useful backgrounds are given. Section III 
describes the work of residual noise reduction. In section IV, 
the results and performance of the time-frequency   block 
thresholding are demonstrated.  
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2BASELINE SPEECH ENHANCEMENT SYSTEM 
The methods of de-noising audio signals have assumed that 
the signal is stationary over a specified interval of time. The 
entire time-domain signal to be processed is divided up into a 
series of these time intervals (often referred to as `windows'), 
and the DSP algorithm processes each interval separately. 
However, it is a fact that audio signals (both speech and 
music) are generally not stationary; they cannot always be 
said to be stationary over each of these windows.  

2.1 Notations 
The properties of sounds are revealed by transforms that 
decompose signals over elementary functions that are well 
concentrated in time and frequency. Windowed Fourier 
transforms and wavelet transforms are two important classes 
of local time-frequency decompositions. Time-frequency 
audio-de-noising procedures compute a short-time Fourier 
transform or a wavelet transform or a wavelet packet 
transform of the noisy signal, and processes the resulting 
coefficients to attenuate the noise.  
The audio signal x  is corrupted by a noise d that is often 
modeled as a zero-mean Gaussian process independent of x: 
 

y[n] = x[n] + d[n](1) 
 
wherex[n] is the clean speech signal and d[n] is the noise 
signal. The processing is done on a frame-by-frame basis. A 
Fourier transform is normally performed on each frame to 
obtain the Short Time Fourier Transform (STFT). The data to 
be transformed could be broken up into a chunks or frames. 
Each frame is Fourier transformed, the complex result is 
added to a matrix, which records magnitude and phase for 
each point in time and frequency. 

STFT{y[n]} = Y[l, k] = �y[n]w(n− l)e−jwn
∞

−∞

        (2)      

wherew(n) is a time window. In this workw(n) is the square 
root of hanning window. 
A time-frequency transform decomposes the audio signal y 
over a family of time-frequency atoms �sl,k�l,k where l and k   
are the time and frequency localization indices. The resulting 
coefficients shall be written as 

Y[l, k] = 〈y,sl,k〉 =  � y[n]
N−1

n=0

sl,k[n]∗                              (3)       

where * denotes the conjugate. These transforms define a 
complete and often redundant signal representation and a 
tight frame which means that there exists A > 0 such that, 
 

‖y‖2   =
1
A��〈y,sl,k〉�

2

l,k

                                              (4)          

 
The constant A is a redundancy factor and if A=1, then a tight 
frame is an orthogonal basis.  
 

A de-noising algorithm modifies time-frequency coefficients 
by multiplying each of them by an attenuation factor to 
attenuate the noise component. The resulting “de-noised” 
signal estimator isSpectral domain procedure. 
 

x�[n] =
1
A�

x�
l,k

[l, k]sl,k[n] 

 
 

x�[n]   =
1
A�

a[l, k]Y[l, k]
l,k

 sl,k[n]    (5)       

 
It is the objective to provide an alternative to the more 
traditional spectral domain model-based approaches to de-
noising by investigating whether wavelet packet or 
trigonometric packet bases can be used to successfully 
decompose the signal for processing. Fig.1 shows the basic 
procedure for spectral domain removal of broad-band 
continuous noise [15]. The time-domain signal is first broken 
up into a series of overlapping windows. 
 

 
 
 

 
 
 
 
 
 
 
 

 
Fig.1 Spectral domain procedure for removing broad-band 
noise. 
 
Each window is then processed individually in the spectral 
domain. Before performing the spectral transform, the 
window is multiplied by a smooth pre-windowing function 
in order to reduce spectral artifacts caused by the 
discontinuities at the edges of the window. Once in the 
spectral domain, the discrete spectral coefficients are adjusted 
using some function. The modified spectral components are 
then transformed back into the timed domain, and multiplied 
by a post-windowing function. This post-windowing function 
is to once again ensure that no discontinuities are introduced 
at the edges of the window. All of the overlapping windows 
are then added back together, and multiplied by a gain 
compensation function which corrects for the variations in 
signal amplitude introduced by the pre- and post-windowing 
functions.  
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2.2 The musical noise phenomenon 
In each frame there will be some spectral components due to 
noise whose power is greater than the estimated noise power. 
Ideally, these spectral components should be set to zero, but 
they are instead merely scaled down, leaving a spectral 
component in the de-noised signal which was not part of the 
original music or speech. This is often referred to as an 
`artifact' or `residual' of the spectral domain processing [15]. 

3 BLOCKTHRESHOLDING 
The block thresholding algorithm of Cai and Silverman [6], 
[12] regularizes diagonal thresholding estimations by 
grouping coefficients in blocks and computing a single 
attenuation factor for all coefficients in each block. This 
estimator is a general context of orthogonal bases and frames 
before applying it to spectrograms for audio de-noising. By 
regularizing the thresholding estimation over blocks of 
coefficients, the musical noise is almost completely removed 
and the SNR is improved. Block thresholding has the 
practical advantage of providing spatial adaptivity to 
relatively subtle changes in the target function.  

3.1 Algorithm for block thresholding 
A time-frequency block thresholding regularizes the power 
subtraction estimation by calculating a single attenuation 
factor over time-frequency blocks. The time-frequency plane 
{l,k} is segmented in I blocks Bi whose shape may be chosen 
arbitrarily. The signal estimator x is calculated from the noisy 
data y with a constant attenuation factor ai over each block 
Bi.   

𝑥�[𝑛] = � � ai

(l,k)∈Bi

I

i=1

Y[l, k]sl,k[n]                                    (6)         

 
To understand how to compute eachai, one relates the 
riskr = E{‖x − x�‖2}to the frame energy conservation and 
obtains 
 

r = E{‖x − x�‖2} 
    To minimize an upper bound of the quadratic estimation 
risk 

r ≤
1
A� � E{|aiY[l, k]− X[l, k]|2}

(l,k)∈Bi

I

i=1

           (7)  

 
Since Y[l, k] = X[l, k] + d[l, k] one can verify that the upper 
bound of (7) is minimized by choosing 
 

ai = 1 −
1

εi + 1
                                                           (8) 

 
whereεi = Xı2����

σı2����
 is the average a priori SNR in Bi. It is calculated 

from  
 

Xı
2��� =  

1
Bi

# � |X[l, k]|2
(l,k)∈Bi

 

 
and 

σı2��� =  
1

Bi
# � |σ[l, k]|2

(l,k)∈Bi

 

 
which are the average signal energy and noise energy in Bi , 
and Bi

# is the number of coefficients (l, k)∈ Bi.  The oracle 
block attenuation coefficients aiin (8) cannot be calculated 
because a priori SNR εiis unknown.Cai and Silverman [14] 
introduced block thresholding estimators that estimate the 
SNR over each Bi by averaging the noisy signal energy 
 

εı� =
Yı2���

σı2���
 

 
whereYı2��� =  1

Bi
# ∑ |Y[l, k]|2(l,k)∈Bi  

The resulting attenuation factor aiis calculated with a power 
subtraction estimator by 
 

ai = �1−
λ

εı� + 1�+
                                         (9) 

 
whereεı � is an unbiased estimator of εi . A block thresholding 
estimator can thus be interpreted as a nondiagonal estimator 
derived from averaged SNR estimators over blocks. Each 
attenuation factor is calculated from all coefficients in each 
block, which regularizes the time-frequency coefficient 
estimation. 

3.2 Block Thresholding in Short-Time Fourier Frames 
The time-frequency block thresholding can be applied 
directly with short-time Fourier frames. Some specifications 
about choice of parameters are discussed below. 

3.2.1 Choice of Block 
We group time-frequency contiguous short-time Fourier 
coefficients in disjoint rectangular blocks. The block size is 
𝐵𝑖# = 𝐿𝑖  × 𝑊𝑖, where 𝐿𝑖 and 𝑊𝑖 are respectively the block 
length in time and the block width in frequency. For 
simplicity, dyadic lengths 𝐿𝑖 = 8, 4, 2 and widths 𝑊𝑖 = 16, 8, 4, 
2, 1 will be used (the unit being the time-frequency index in 
spectrogram). 

3.2.2 Choice of Thresholding Level λ 
One can tolerates the thresholding level λ by the given values 
of choice of block size and the residual noise probability level 
δ. For each block width and length, λ is estimated with δ = 
0.1%. For a block width W > 1, blocks that contain same 
number of coefficients 𝐵𝑖# = L×W have close λ values. For 
adaptive block thresholding the value of λ has been chosen as 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             2185 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

1.5. Here the size of the macro blockis set to be equal to the 
maximum block size 8*16. 

3.3 Adaptive Block Thresholding 
A block thresholding segments the time-frequency plane in 
disjoint rectangular blocks of length Li in time and width Wi 
in frequency. The adaptive block thresholding chooses the 
sizes by minimizing an estimate of the risk. The risk E{‖x −
x�‖2} can be estimated with a Stein risk estimate [15]. 
 

r = E{‖x − x�‖2} 
 

r ≤
1
A� � E{|aiY[l, k]− X[l, k]|2}

(l,k)∈Bi

I

i=1

            (10) 

 
To estimate the block thresholding risk Cai [6] uses the Stein 
estimator of the risk when computing the mean of a random 
vector, which is given by Stein theorem [15]. 

3.4 Stein Unbiased Risk Estimate (SURE) 
Let Y = (Y1, … … … . , Yp)  be a normal random vector with the 
identity as covariance matrix and mean X = (X1, … … … . , Xp). 
Let Y + h(Y) be an estimator of X, where h = (h1, … . . hp), then 
 

R = E‖Y + h(Y)− X‖2 = p + E{‖h(Y)‖2 +  2∇. h(Y)} (11) 
So 

R� = p + ‖h(Y)‖22 + 2∇. h(Y)                                                (12) 
is an unbiased estimator of the risk R of Y+h(Y), called Stein 
unbiased risk estimator [15]. The adaptive block thresholding 
groups coefficients in blocks whose sizes are adjusted to 
minimize the Stein risk estimate and it attenuates coefficients 
in those blocks.  
To regularize the adaptive segmentation in blocks, the time-
frequency plane is first decomposed in macroblocks. Each 
macroblock is segmented with 15 possible block sizes L×W 
with a combination of block length L=8,4, 2  and block width 
W=16,8,4,2,1. The size of macroblocks is set to be equal to the 
maximum block size 8×16. In particular adaptive block 
thresholding eliminates pre-echo artifacts on signal onsets 
and results in less signal distortion. 

4 RESULTS AND DISCUSSION 
A number of experiments have been performed on various 
music signals. The adaptive block attenuation performs well 
against the conventional thresholding operators. It counters 
the effects of musical noise that is present in diagonal and 
non-diagonal estimators. 
The results presented below have been performed on various 
types of audio signals: “Mozart” is a musical signal that 
contains respectively quick notes played by a solo oboe and 
by some drums; “TIMIT-M” is a male utterances taken from 
the TIMIT database. It is sampled at 16 kHz whereas Mozart 
is sampled at 11 kHz. They were corrupted by white 
Gaussian noise of different amplitude. Short-time Fourier 

transforms with half-overlapping windows is used. These 
windows are square root of Hanning windows of size 50 ms 
for “Mozart”, and 20 ms for “TIMIT-M”. 
 
TABLE4.1 COMPARISON OF PERFORMANCE OF DE-NOISING 
S
I.
N
O 

Audio 
Signal 

Without 
Empirical Wiener 

With Empirical 
Wiener 

SNR of 
the 
noisy 
signal 

SSNR 
of the 
de-
noised 
signal 

SNR of 
the noisy 
signal 

SSNR of 
the de-
noised 
signal 

1 Mozart 
Signal 

5.10 14.38 5.10 15.13 

2 TIMIT-M 
Signal 

0.49 13.07 0.49 13.98 

3 Crumbling 
paper2 

0.91 2.44 0.94 2.84 

4 Electric 
Static 
Signal 

0.29 0.51 0.32 0.62 

5 TIMIT-M 
& F Signal 

14.26 14.40 14.28 15.17 

6 Piano 
Signal 

2.09 8.07 2.06 8.53 

In our simulations, we used a clean speech which was 
artificially corrupted with white Gaussian noise. Table 4.1 
compares the performances of the classical de-noising scheme 
based on Wiener filtering and the block thresholding 
approach for different values of SNR. One can observe that 
the nondiagonal Wiener postprocessing based algorithms 
achieved systematically a better SNR than the adaptive block 
thresholding algorithm. For all the signals the SNR value of 
the noisy signal is same, but the segmented SNR value of the 
de-noised signal is improved  better than the block 
thresholding method. This fact is predictable since we used 
spectral and perceptual considerations to enhance speech. 
Although the improvement in term of WSS, the de-noising 
approach didn’t reach the original quality (between clean and 
noisy). However, it is well improved when compared to that 
of de-noised speech using Wiener. Spectrograms are 
considered.  The noisy speech signal is a speech sequence 
corrupted by a Gaussian noise whose SNR = 10 dB. It is worth 
pointing out that the de-noised signal by the classical method 
is affected by a musical noise (isolated points randomly 
distributed in time and frequency). The amount of such noise 
is dramatically reduced by the proposed approach. 
The fig. 1shows the time waveform of original signal, noisy 
signal and the de-noised signal. These results indicate that 
considerable noise rejection has been achieved. From these 
figures, it can be seen that the enhanced signal becomes very 
close to the original signal.  
In order to preserve the high frequency components during 
the de-noising process, block thresholding is applied. The 
length of the block is chosen as L=8 and the width of the 
block is chosen as W=16 with the thresholding level λ=1.5. 
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The desired signal is obtained by taking the inverse Short 
Time Fourier Transform.  

 
Fig. 1 Time waveform of original signal, noisy signaland enhanced signal 

5CONCLUSION 
This paper introduces a time-frequency block-thresholding 
algorithm that adapts all parameters to the time-frequency 
regularity of the audio signal. The adaptation is performed by 
minimizing a Stein unbiased risk estimator calculated from 
the data. It eliminates the residual noise artifacts and 
preserves the transients of the signal. The resulting algorithm 
is robust to variations of signal structures such as short 
transients and long harmonics. The performance was 
demonstrated using short time spectra with and without 
noise suppression. Results indicate the overall significant 
improvements in the quality of audio signal. 
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